WELCOME!

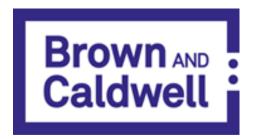
Our Meeting Will Begin Just After 1130 (**Please keep your audio muted to begin meeting**)

SDSU | Mission Valley

Society of American Military Engineers Virtual Conference Rules of Engagement

- Please mute your microphones during the meeting!
- View functions (located in top right corner):
 - Speaker view
 - Gallery view
- Use Speaker View during presentation
- Submit questions via the Zoom Chat Function

- <u>1130 1145</u>: Welcome, Pledge of Allegiance, & Introductions
- <u>1145 1155</u>: SAME Scholarship Awards
- <u>1155 1215</u>: 2021 Greater San Diego Science & Engineering Fair SAME STEM Awards & Project Presentations
- <u>1215 1245</u>: SDSU Mission Valley by Robert Schulz University Architect, SDSU
- <u>1245 1255</u>: Question & Answer
- <u>1255 1300</u>: Meeting Closeout


Pledge of Allegiance

Thank You to Our Sponsors!

Thank You to Our Sponsors!

INTERNATIONAL

Consultants, Inc.

\$82,000 awarded to 9 recipients chosen from 39 applicants

General Awards

- Rachel Astet Vasquez, SDSU Engineering Sciences (PhD)
- Kilian Colin, SDSU Environmental Engineering
- Justin Daus, USD Industrial & Systems Engineering
- Andrew Ruff, SDSU Mechanical Engineering
- Miguel Molina, CSUSM Electrical Engineering
- Joshua O'Connell, SDSU Electrical Engineering

Tom Crane Award

- Minghua Ong, UCSD – Bioengineering

Ben Montoya Award

- Christopher Colandene, USD – Industrial & Systems Engineering

Jackie Price-Dunn Award

- Rachel Fernandez, CSUSM – Software Engineering

2021 SAME STEM Awards

67th Annual Greater San Diego Science & Engineering Fair 2021

- Event conducted virtually on March 16th 2021
- Panel of judges from San Diego SAME chapter
- Cash prize for top three projects in Junior and Senior divisions

Tyler Williams

St. Michael's School – 7th Grade

Robotic Firefighter

Robotic Fire Fighting Machine By: Tyler J Williams

Anirudh Kalyanaraman

Mesa Verde Middle School – 8th Grade

Optimization of Canard Configuration to Enhance Aircraft Carrier-based Operations

a same last

Junior Division Award Winner

Optimization of canard configuration to enhance aircraft carrier-based operations

Anirudh Kalyanaraman,

Mesa Verde Middle School, Grade 8

What is the **optimal coupling distance** (distance between the trailing edge of the canard and the leading edge of the wing) in an inbuilt model of a canard aircraft that **minimizes the pull up radius**?

a . alue

Gansre

- Conducted experiments with prototype aircraft, free body force analysis and numerical simulations
- Canard aircraft with a long coupling distance showed promising flight characteristics with reduced dive angle and higher displacement leading to tighter pull up radius.
- Larger coupling distance
 results in improved maneuver
 capability and aerodynamic
 performance of carrier-based
 combat aircraft.

Santiago Martinez

Nazareth School – 7th Grade

Does the Shape of an Airplane's Wing Influence the Distance it Travels?



Does the shape of an airplane's wing influence the distance it travels?

-	and the	1	2	3	10	100	1			-		н	15	14	н
Returner	111.00	HE.	a min	ISSEE	DIMIN	anne:	Dilline I	HILLE	LEXUS	E HOL	EXE	411156	1000	199.591	0188
Tilgeboot .	111.13	12.1	14.88	NIN		a a a a a a a a a a a a a a a a a a a	141.42	11.013	4042	300 I W	19.64		an a		197.4
T.	THE TW	118.010	10144						WITT I				SIL IN	and the second	
Copy of the															
Della	130,488	M. 14		-ALMA	214.000	<u>uran</u>	STATES I	State of the	III URAUN	111.9	<u> G</u> ILVII	HICK!	10.008	Nie Wi	SHI LIN
Daerofici	101408	Man	TINN	17417	(MIR)	THU	Si ne	ann de la	(in the second	17.00	100.1a	Little	No.	11/17	100.004
Come	398.34	307.648	399.288	TAIL	312.898	100-100	229.184	18510	1273	144.000	-INST	111168	217 148	200.204	11110
					in the second	1000		and the second second							
Timest Rock	17.18	10.00	283 464	202		ALT: UNK	CHE C	MANN	I IS NOT	A MILLION		Think of	1991.144		A DECK

Based on the results, the Rectangular Model was the most consistent on its average flight distance. The Delta and the Ogive models, both of which the wing-design is triangle-like shaped and do not have horizontal stabilizers, recorded the shortest distance flights

Hypothesis: Yes, it does. And, I thought the elliptical-wing plan would fly the farthest.

Procedure: (1) build seven different wing-design planes, and rubber band-powered launcher; (2) launch each plane fifteen times; (3) record data for each plane; and (4) run calculations and prepare graphs.

<u>Result</u>: Ogive-wing plane flew the farthest.

Bella Rose Schremmer

University City High School – 10th Grade

Clean Coastal Energy by a Piston-Buoy Rack Pinion WEC System

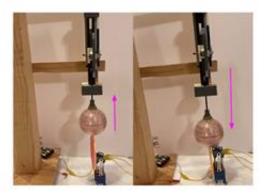
April 2021

Clean Coastal Energy by a Piston-Buoy Rack and Pinion Wave Energy Converter System

By. Bella Rose Schremmer

WEC Device applied to pillars

Flow of Energy:


Mechanical Energy

Generator

Electrical Energy

Potential Energy Battery Storage

-Harness the reciprocating linear motion of ocean waves to provide low cost renewable power -Applied to pre-existing structures, like a beach pier pillar, for easy application and no need for costly drilling into the sea floor

WEC device being tested with CAM

Issa Alwazir

Bright Horizon Academy – 10th Grade

Deleting Drunk Driving

Deleting Drunk Driving

According to the Federal Bureau of Investigation (FBI) in 2016 reported that there were 1,017,808 arrests for driving under the influence 10,497 casualties that were claimed by them in one year alone! Driving under the influence has long been one of the top factors behind these collisions.

The objective of this project is to create a robot that is accurate, reliable, fast and affordable to monitor the the sobriety of the driver of a car. Once the sensor detects alcohol in the person's breath, it will disable the car from starting for safety reasons. This device will then call the designated family member of the driver to alert them, but then if the driver attempts to start the car the authorities will be contacted directly by the robot.

I firstly built the prototype car to be fitted with the Arduino, IoT Module and an alcohol sensor. I then needed to code it in C language on KIPR C, a software for coding the KIPR Wombat. I then wired the Arduino to the alcohol sensor so that I can allow it to communicate with the prototype car. Next, I coded on the Arduino IDE software using combined functions from C and C++. I finally secured the Arduino and IoT Module to the prototype car.

I tested the car in 70 trials with it working accurately 91.4% of the time. The car was successfully disabled from starting when it detected alcohol in the breath. The device was also able to call the designated family member of the replica person driving the prototype vehicle.

In conclusion, this device is affordable, costing \$34 in total and can be mass produced at an even smaller investment cost for country-wide distribution rather than current innovations which are hard to come-by for the majority of the population and range in cost between 400 and \$500.

Jessica McWilliams

Scripps Ranch High School – 10th Grade

In-situ Pore Water and Sediment Sampler

In-situ Pore Water and Sediment Sampler

By Jessica McWilliams

Environmental scientist collect pore water and sediment sample to identify contaminates in underwater sediment. However their job is limited by their sampling equipment. A device was built that simultaneously takes a sediment core and pore water samples from 3 different depths.

The sediment sampler collects a sediment core using a core catcher.

The pore water sampler collects water from 3 discreate levels using screened sections connected by couplers.

A large screw is used to lower and raise the platform through the base.

Clamps attach the samplers to the wooden platform

A metal frame provides a sturdy structure and rails guide the platform

Robert Schulz

University Architect – San Diego State University

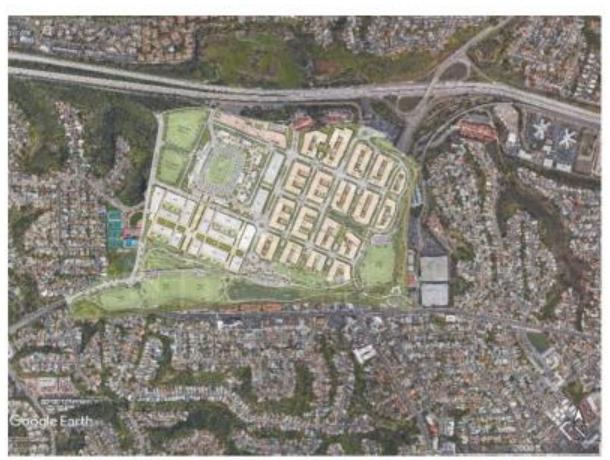
- San Diego resident since 2006
- Ball State University B.S. in Architecture Cal Poly Pomona – M.S. in Architecture
- Licensed Professional Architect in California
- Proud husband, father, and "Aztec for Life"

SDSU | Mission Valley

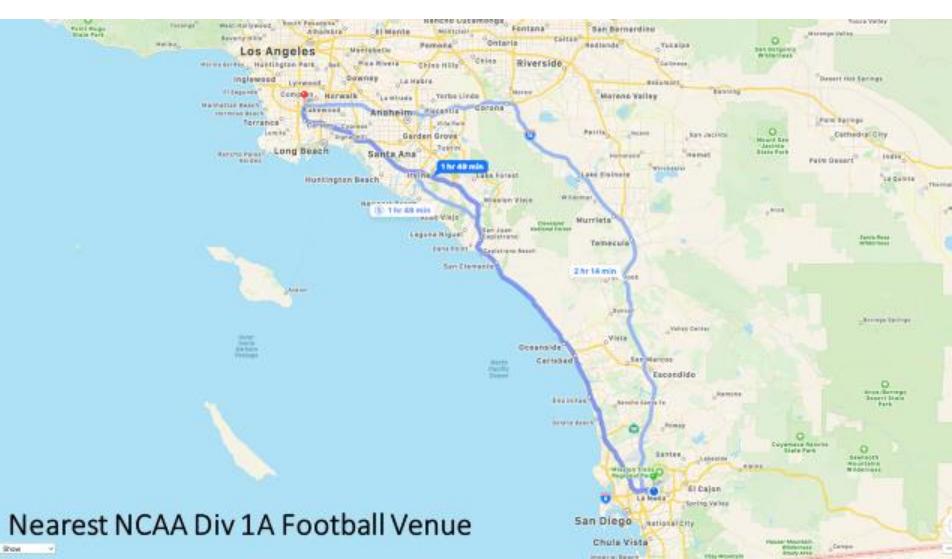
Why SDSU MV?

Opportunity

Location


Immediate Need

Scale of Property


Mission Valley to Existing Campus Comparison

Adjacency to Existing Campus

What

Projects Overview

Property Acquisition

Property acquisition and offsite improvements

- Owner: SDSU
- Budget: \$134M
- (\$88 M Purchase Price)
- Expected Completion: Sep 2037

Residential Development

Public Private Partnerships

- Long Term Ground Leases
- Private Capital
- Non-recourse to University
- Expected Completion: 10-15 Years

Stadium

35,000 capacity stadium and outbuildings

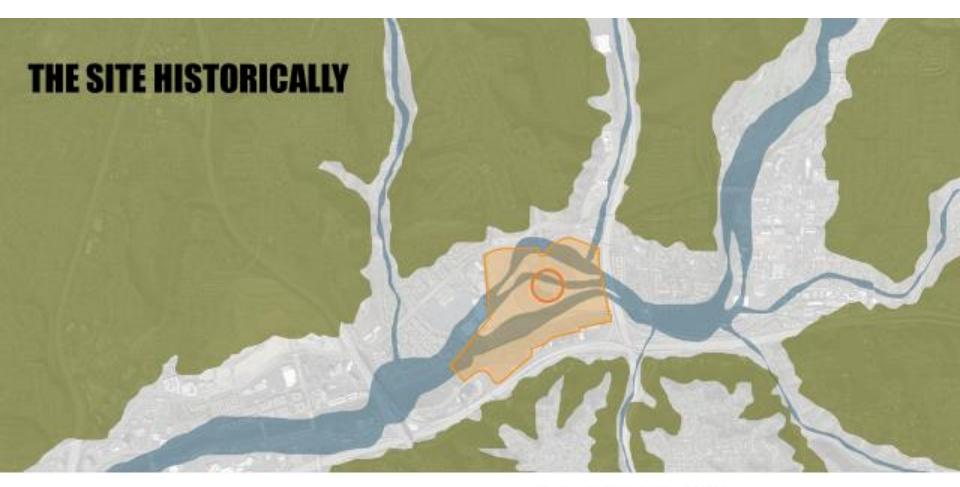
- Owner: SDSU
- Architect: Gensler
- Budget: \$310M
- Completion Date: Sept 2022

Site Development

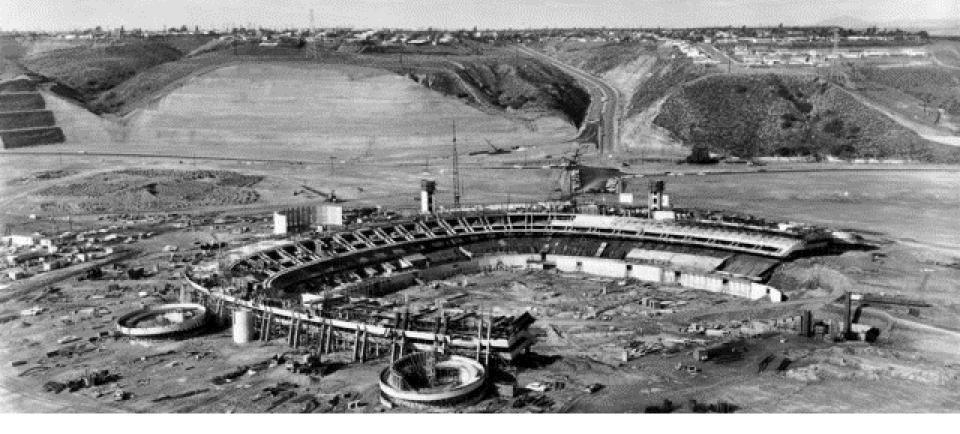
160 acre demolition and redevelopment

- Owner: SDSU
- Engineer: Project Design Consultants
- Budget: \$216M
- Expected Completion: Sep 2023

Innovation District

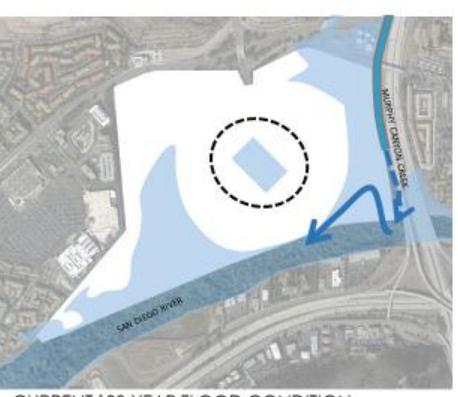

Public Private Partnerships

- Long Term Ground Leases
- SDSU Build-to-Suit
- State/Campus Project
- Expected Completion: 10-15 Years



1930 FLOW

EXISTING STADIUM CUT & FILL | 1965



THE RESULT:

- 1965 TO PRESENT
- HYDROLOGY IGNORED
- RIVER ASSETS IGNORED
- FLOOD RISKS IGNORED.

3

CURRENT 100 YEAR FLOOD CONDITION

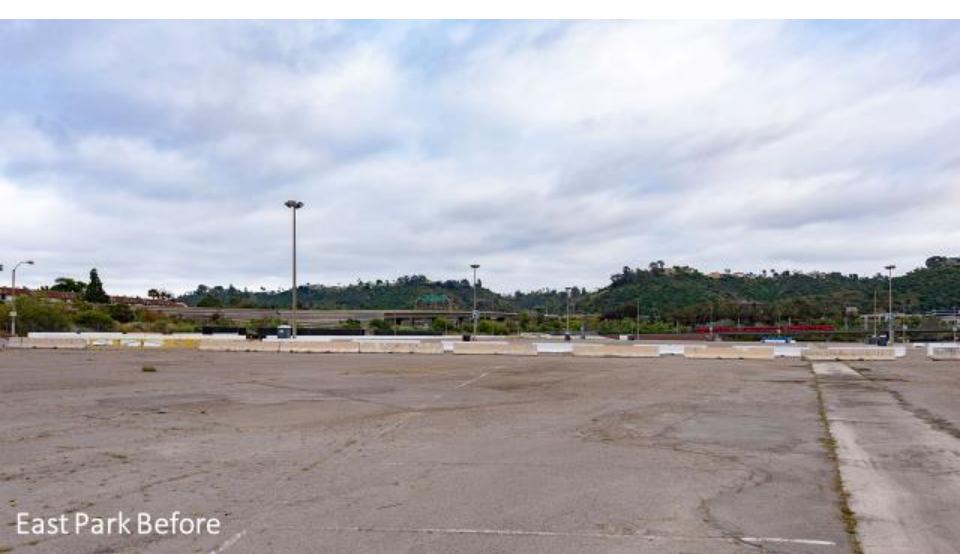
NEW 100 YEAR FLOOD CONDITION

SITE HYDROLOGY CONCEPT

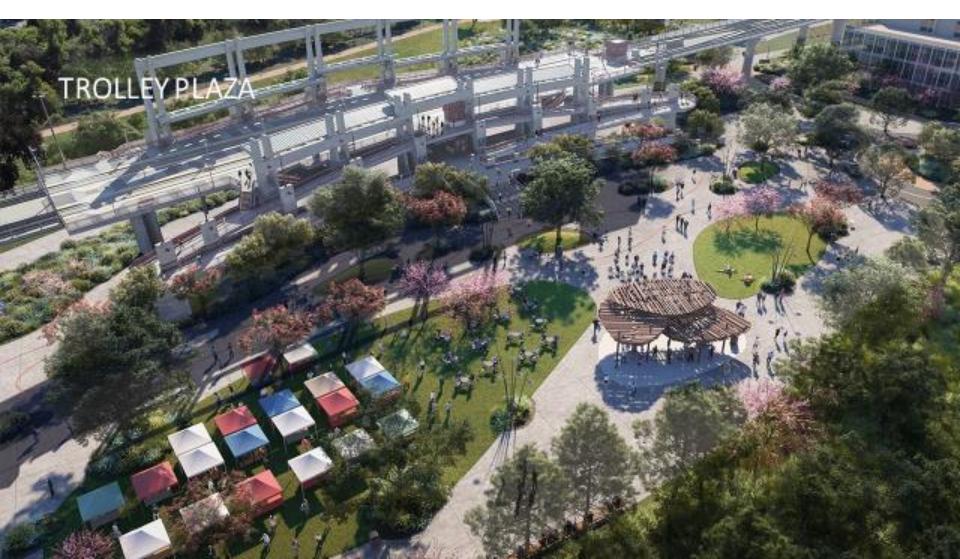
SDSU Mission Valley – Site Development

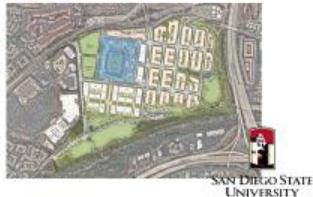
PARKS & OPEN SPACE

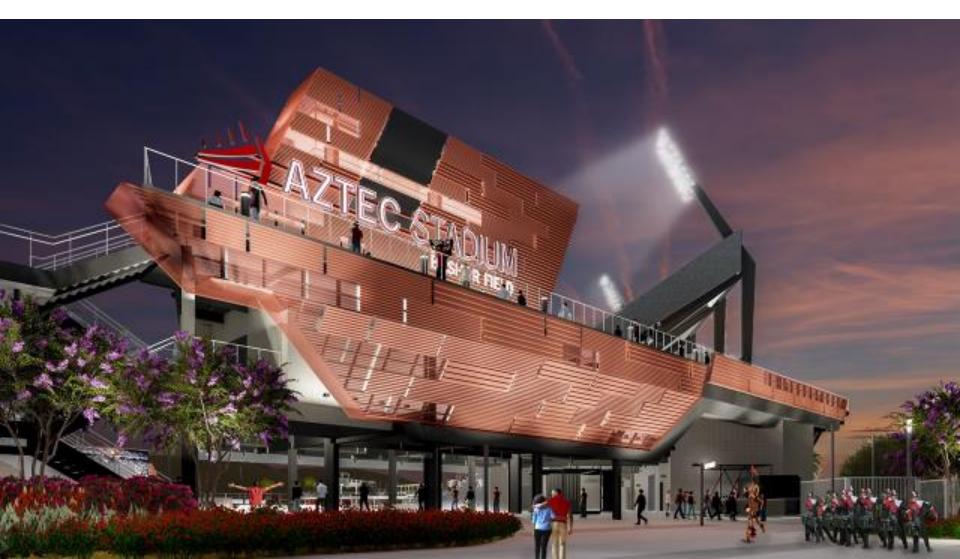
- 80+ TOTAL ACRES
- 4 MILES HIKE/BIKE TRAILS
- ACTIVE AND PASSIVE RECREATION
- WATER QUALITY BASINS AND FLOOD MITIGATION



Field View Before

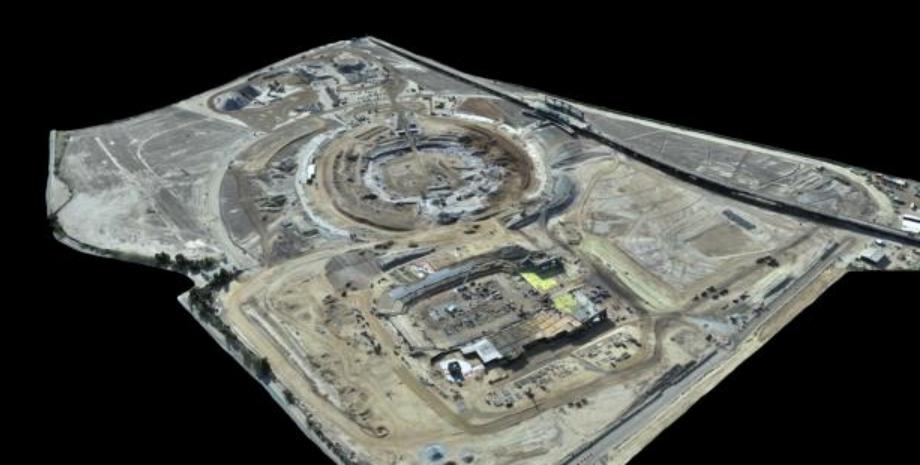



SDSU Mission Valley – Aztec Stadium


STADIUM

- 35,000 CAPACITY MULTI-USE STADIUM
- MULTI-USE RECREATION FIELDS/TAILGATE PARK
 - 1,000 GAME DAY PARKING SPACES
- SHARED PARKING WITH INNOVATION DISTRICT

Mission Valley



Site Modeling

Hmmm?

September 2022

Summer 2023

FUN FACTS

Structural Steel: 6,400,000 lbs.

Concrete: 200,000 CY 620 miles of sidewalk!

Rebor: 7,500,000 lbs.

Wet Utilities: 38,000 LF

7 Miles of utilities!

Imported Soil: 470,000 CY

40,000 Dump Trucks!

Conduit: 173 Miles

SDCCU Stadium to Barstow!

Site Size: 160 Acres

60 Downtown city blocks!

LOCAL IMPACT

TRADE PARTNERS

 <u>28</u> SUBCONTRACTORS WITH SAN DIEGO OFFICES

 <u>12</u> DESIGN PARTNERS WITH SAN DIEGO OFFICES

SDSU ALUMNI

 <u>11</u>SDSU ALUMNI FROM CLARK WORKING ON SDSU MISSION VALLEY

SDSU Mission Valley – Residential

HOUSING

P3: Private Development on Leased Land

- 4,600 UNITS ON 18 BLOCKS
 - Market-rate
 - Workforce
- AFFORDABLE ON-SITE
 - 10% (Up to 460 units)
 - 60% AMI
 - Income-Averaging
 - Family/Senior

SDSU Mission Valley – Retail

RETAIL

1st Floor of Mixed Use Buildings

95,000 SF – Ground Level on D Street

No Stand-Mone Retail Pads

SDSU Mission Valley – Hotel

HOTEL

P3: Private Development on Leased Land

- UP TO 400 HOTEL ROOMS
- 40,000 SQFT CONFERENCE SPACE

SDSU Mission Valley – Innovation District

RESEARCH & INNOVATION DISTRICT

- 1.6 MILLION SF
- 15 BUILDINGS
- 3-6+ STORIES
- PUBLIC-PRIVATE PARTNERSHIPS
- 5,000 PARKING SPACES
- TROLLEY ACCESS
- SUPPORT UP TO 15,000 ADDITIONAL STUDENTS OVER TIME

一、李伟

SDSU Mission Valley – Innovation District

Innovation District Development Models

- Ground lease model with public or private partner
 - Individual partner
 - Commercial developer
- SDSU-led Build to Suit
- State/Campus funded capital project

Questions? (Reminder to use "Speaker View")

Thanks Again to Our Sponsors!

Thanks Again to Our Sponsors!

INTERNATIONAL

Consultants, Inc.

Announcements

- SAME Young Professionals Virtual Happy Hour April
 - Wednesday, April 28th (1800 1900) Networking & Pictionary!
 - Sign up by emailing Travis Pital <u>tpital@pacrimengineering.com</u>
- SAME May Luncheon NAVFAC Engineering & Expeditionary Warfare Center (EXWC) UAV Presentation
 - Wednesday, May 12th (1130 1230) Webinar
 - Utilizing UAV technology to help protected species & other applications
- SAME Young Professionals Virtual Cooking Class May
 - Date / Time TBD Coordination with Chef(s) underway
 - Sign up by emailing Travis Pital <u>tpital@pacrimengineering.com</u>

Announcements

• SAME 2021 Summer Camps

- Army / USMC camps in-person; Navy, USAFA, & Scott Field camps virtual
- Additional info at same.org/stemcamps
- Mentors needed for all camps. If interested, please contact Allison Cantu (allison.cantu@navy.mil)
- SAME Camp Pendleton Day
 - Thursday, June 17th (1130 1230) Webinar
 - Andrew Baughman (NAVFAC SW) Energy Resiliency Presentation
- Interested in Joining our SAME San Diego Chapter?
 - Contact Melanie Kito (<u>melanie.kito@navy.mil</u>) or Sean Leffler (<u>sean.leffler@eurofinset.com</u>)
- Need Professional Development Hours?
 - Contact LT Matt Harvie (<u>sameprograms@gmail.com</u>)

Goals of the 2025 Strategic Plan

- Strengthen Industry-Government Engagement
- Build and Sustain Resilient Communities
- Develop Leaders for the Profession
- Enrich Our Nation's STEM Pipeline
- Prepare Service Members and Veterans for the A/E/C Industry

Our Mission:

Build leaders and lead collaboration among government and industry to develop multidisciplined solutions to national security infrastructure challenges.

http://www.same.org/San-Diego

bit.ly/SAMELkdin

調SANDECOPOS

Get Involved Today!

Society of

