

Planning for a Better Tomorrow: Utilizing Accurate Models to Shape the Future

We Love a Good Puzzle

PRECONSTRUCTION / SOLUTION DEVELOPMENT

BUILD

FACILITY SERVICES

BUILDING ANALYSIS + MODELING

ENERGY + ENVIRONMENT

MANUFACTURING

BUILDING AUTOMATION

Diversity, Equity & Inclusion (DEI)

MISSION + VISION

UMC's DEI mission is to foster a culture that welcomes a diverse group of skills, perspectives, and experiences—and empowers individuals to succeed and grow.

We are committed to creating a workplace where everyone feels safe, seen, valued, and heard.

THIS INCLUDES

Dedicating resources to ensure UMC is a safe place for all. Supporting diverse trade partners and vendors so they can thrive.

Providing education opportunities around unconscious bias.

Continuous monitoring of the health of our DEI culture.

UMC DEI COMMITTEE

Establishing core actions and policies to retain talent.

Evaluating pay equity and promotion velocity data within UMC.

BAM!

David Park, Ph.D, PE, CEM, BEMP BUILDING ANALYSIS & MODELING MANAGER

Every. Single. Energy savings. Matters! David couples analysis with energy audits to identify energy efficiency measures (EEMs) that are cost effective for owners' business goals. Driven to make a significant impact towards carbon reduction and sustainability, David enjoys studying and analyzing how building energy reduces utility and operational costs, making it a great investment for the future.

Hailee Hammerquist, LEED Green Associate BUILDING ANALYSIS & MODELING ENGINEER

Hailee is detail oriented, organized, and passionate about sustainable design. She loves tackling the complexity of our projects to ensure all the pieces fit efficiently together inside high-performing exteriors. Coming from West Virginia, Hailee is excited to experience all the outdoor adventures that the Seattle area has to offer. She spends her time off the clock outside hiking in the summer and hitting the slopes in the winter.

Objectives

Why are Buildings so Important?

40% of energy consumption...

14,600 million ton of CO₂ emission

Carbon sequestered by 241,412 million tree seedlings grown for 10 years

Possible Complications

Stricter Targets Energy Code

Clean Buildings Standard

*Buildings 20,000 SF – 50,000 SF must now submit their EUI per Energy Star Portfolio Manager along with their Energy Management Plan, Operation & Maintenance Program, and Capital Management Plan by July 1, 2027

Seattle Building Emissions Performance Standard

Timing: Set emission targets now, so owners have time to plan and implement projects.

1ST LAW of Thermodynamics

Do we *know* our buildings?

	2018
Last Year	This Year
0.73	1.46
\$1.21	\$1.93
30	32
66°F	66°F
	Last Year 0.73 \$1.21 30 66°F

Issued: July 15, 2018	
Account Number	r: 200012345678
DUE DATE	August 4, 2018
TOTAL DUE	\$165.64

Your Account Summary		
Previous Charges: Amount of Your Last Bill (dated 6/13/201 Payment received 7/3/2018 – Thank you	8)\$!	137.78 -137.78
Past Due Amount	\$	0.00
Current Charges: Electric Charges Natural Gas Charges	\$	103.95 61.69
Total Current Charges	\$	165.64
Total includes current and past due charges	tal \$	165.64

Late Payments | A late payment fee of 1% per month will apply to past due charges, if any, and amounts unpaid more than 10 business days after the statement due date. Amounts will be considered delinquent if payment is not received on or before the due date.

Monthly Energy Tip

Save money and stay cool this summer. Add insulation to make your home more energy efficient throughout the year.

How to reach us

Email: customercare@pse.com

Customer Service: 1-888-225-5773 TTY: 1-800-962-9498 TRS: 1-866-831-5161 Hours: 7:30 a.m. - 6:30 p.m. M - F Puget Sound Energy: P.O. Box 91269, Bellevue, WA 98009 24 Hour Emergency and Outage line: 1-888-225-5773

Technological Evolution

😸 Now

What is Building Energy Model and CFD?

BUILDING ENERGY MODELING

The practice of using computer-based simulation software to perform a detailed analysis of energy use and energy-using systems

COMPUTATIONAL FLUID DYANMICS (CFD)

Mathematically predicting physical fluid flow by solving the governing equations using simulations

List of Capabilities with model

Why You Should Consider Modeling

Energy Modeling Enables a Cycle of Benefits Throughout the Design Process

Aggressive targets and code

Smart and efficient decisions

Reduced Operating and Cost

Deeper knowledge of building design

Sustainable Design and Solution

Working together

Definition of a Model

Limitation and Challenges

Complex in Nature

- Site, Climate, Shading
- Building Schedule
- Occupancy type
- Loads
- Design
- AND MORE!

Overlake Medical Center

- Objective: Develop energy management plan to meet clean building standards and decarbonization goals
- Challenge
 - Finite amount of budget
 - Complicated system

OVERLAKE MEDICAL CENTER & CLINICS

High accuracy and precision

CASE STUDY Overlake Hospital Medical Center

Natural Gas (Therm)

ENRERGY MODEL – SYSTEM DIAGRAM

MAIN STEAM PLANT

MAIN CHILLED WATER PLANT

UNICO CHILLED WATER LOOP \$ \$ \$ \$ M - Will

AIR HANDLING UNITS

PACCAR

ELECTRIC HEAT

眥

simplicity purposes.

ENRERGY MODEL – DHW

Overlake Medical Center is a 349-bed, nonprofit regional med advanced medical services to the Puget Sound region. Led by employ nearly 3,000 people and have some 1,000 active and including more than 200 providers who are employed by the

We were the first Level III Trauma Center on the Eastside and winning, compassionate and patient-centered care. Our com standards in medical care is a major reason our patients and the reason why we've received many awards and recognition

DHW USAGE CALCULATION

• Typical Hospital 150-250 gallons of water per day per bed (70% assumed to be hot water)

ons both regionally and nationally.

• 20 visitors per day on average per staff

the reason why we've received many awards and recogn

- Overlake
 - 349 Beds (250 x 349 x 70% = 61,075 gallon of hot water
 - 3,000 Staff (20 x 3,000 = 60,000 Visitors)

Water consumption data can be re-calibrated once total water consumption data is available.

Overlake Medical Proposed Design Summary

223.1 120.6 kBtu/sf/yr

Energy Use Intensity Proposed model

Annual Cost Saving \$ 468,151 per year

Energy Efficiency Measures (EEM) Summary

Following list summarizes only key EEMs for each category. Breakout EEM analysis will be provided in the future.

Load Reduction (1-5 EUI reduction)

- Lighting improvement (Occupancy sensors, LED installation, and etc) currently only focused on patient room and amenity – Potentially more savings available with full lighting audit
- Mechanical load optimization (Lab/med vacuum)

HVAC Upgrades (20-35 EUI reduction)

- AHU return air installation (South Tower AHU-3,4,5, SP SF-1,2,3)
- Fan wall replacement
- Setpoint optimization (Zone temperature set point, occupancy sensor setbacks, etc.)
- Static pressure resets for AHUs (coil cleaning, reset control, removing inlet vanes, and etc.)
- Surgery Volume scanning & Minimum ACH optimization

Plant Upgrades (5-15 EUI reduction)

- General Heat recovery for the plant
- Boiler economizer
- Steam leakage/heat loss reduction (DA tank pressure reduction, pipe insulation, etc)
- Cooling Tower Relocation and optimization
- Chiller plant sequence optimization
- Pump VFD installation

DHW heat recovery (3-10 EUI reduction)

DHW preheat / heat recovery

Major Equipment Upgrades (15-40 EUI reduction)

- High efficiency condensing boiler
- HP technology
- Heat recovery Chiller

FROM THIS | Just numbers

brk	PROJECT TOTAL	TOTAL
	AHU Damper Functional Testing & Adjust	\$1,081,834
	HVAC. AHU Damper Functional Testing & Adjust. AHU-2R dampers are mostly shut and not	
EEM-11	positioning correctly, AHU-2 In NET return dampers not functioning properly. AHU-44	\$1,100,000
	dampers not positioning properly, WT Heart & Vascular AHU outside air dampers not	
	Tunctioning properly, AHU-8 lower damper section not open. I nese and other issues indicate	
	AHLI Sumhi Air Temperature Beset	\$660.400
	HVAC AHII Supply Air Temperature Reset Reset AHII supply air temperature based on zone	\$660,499
EEM-20	Invac, and supply an temperature reset, reset and supply an temperature based on zone	\$660,000
EEIVI-20	zones which artificially reset the AHU. Add timers to provide system stability	\$660,000
	Internal Envelope Inspections and Ontimization in High ACH or Volume Rooms	\$451.800
	Envelope Internal Envelope Inspection and Optimization in High ACH or Volume Rooms	9492,000
	Perform a detailed inspection of room internal envelopes and appropriately seal the room	
FFM-71	Surgery Rooms, Decontamination, All Rooms, Sterile Processing, and Labs are examples	\$450.000
22101 / 2	including any rooms where airflow offsets are greater than room requirements to meet	÷+50,000
	pressure requirements.	
	AHU Airflow Stations for Calculating Minimum Outside Air Damper Position	\$134.592
	HVAC, AHU Airflow Stations for Calculating Minimum Outside Air Damper Position, All AHU's	<i>+</i>
EEM-75	without airflow stations should have these stations added for outside air and supply air then	\$135.000
	calculate minimum outside air position (technically flow not position).	+===,===
	AHU-1, 2 for OMT DX Sequence Optimization	\$39,255
	HVAC. AHU-1, 2 for OMT DX Sequence Optimization. The direct expansion cooling sequence	
EEM-83	of operations for the OMT AHU's appears to not be as energy efficient as it can be. Adding a	\$40,000
	new optimized sequence can help the unit perform better.	
	AHU Remove Fan Inlet Dampers, add Current Transducers (or alternative), and Alarm	\$101,212
	HVAC. AHU Remove Fan Inlet Dampers, add Current Transducers (or alternative), and Alarm.	
	Numerous AHU's have inlet fan barometric dampers which produce significant pressure	
EEM-84	drops and friction for the system, reduces capacity, and affects energy efficiency. Removal	\$100,000
	and adding safeties such as alarms to catch any fan failures can produce the same intended	
	results as the damper.	
	AHU Return Air Addition to all 100% Outside Air Fans and Remove Heat Wheels & Heat Pipes	\$1,636,363
	HVAC. AHU Return Air Addition to all 100% Outside Air Fans and Remove Heat Wheels &	
	Heat Pipes. Surgery Pavilion, South Tower 2nd Floor Mechanical Rooms, and any other 100%	
EEM-86	outside air AHU's can be converted to return air units, their heat recovery devices removed,	\$1,640,000
	airflow sensors added to control system to meet ventilation needs. This reduces heating and	
	cooling loads significantly.	
	DOAS install for OMT Pharmacy Space & Remove from Central AHU	\$0
	HVAC. DOAS Install for OMT Pharmacy Space (and other 24/7 ventilation loads) & Remove	
FEM 01	from Central AHU. Possible DOAS installation on 2nd floor roof on NW corner of building or	¢3 500 000
EEIVI-91	3rd floor ASC mechanical room above existing unit. Approximate airflow to pharmacy space	\$2,500,000
	is 3,000 to 4,000 CFM.	
	Fan Terminal Unit Filter Upsizing to 2"	\$554,869
EEM-92	HVAC. Fan Terminal Unit Filter Upsizing to 2". Install sheet metal sliding racks or front-loading	\$550.000
ECIVI-92	racks to approximately 208 Fan Terminal Units in the building.	\$350,000
	Fan Terminal Unit Rebalance to Neutral in OMT	\$235,754
FEM-93	HVAC. Fan Terminal Unit Rebalance to Neutral in OMT. Rebalance of approximately 208	\$235.000
ECIM-55	FTU's. Adjustment of setpoints to balance unit to neutral. This does not include	\$233,000
	NET Heating Water Bypass Valve for Series Operation	\$79,490
EEM-94	HVAC. NET Heating Water Bypass Valve for Series Operation. Add a heating water bypass	\$80,000
	valve in the NET mechanical room to place the HRC in series with the steam heat exchangers.	
	Optimum Start/Stop Sequence Addition for OMT	\$31,886
FFM-95	HVAC. Optimum Start/Stop Sequence Addition for OMT. Add optimum start/stop sequence	\$30,000
EEIVI-95	to the existing Siemens DDC system.	+30,000

→ TO THIS | Informed decisions

Kec	omn ⊦6 E	UI Benefit)	e assigr		LOW (Cumulative	Cun	TS
FEM-55	Plant	DA Tank Pressure Reduction to 5.5 nsi	<	456.00	3.45	s	132	EUI 3.45	S	\$ 456
EEM-45	Plant	Chiller Condensing Water Inlet Temperature Optimization	Ś	19,220.00	1.81	s	10.648	5.26	s	19.676
EEM-25	HVAC	AHU on West Tower Roof (Haakon) Outside Air Damper/Airflow Fix	is	956.00	0.05	ŝ	20,340	5.30	ŝ	20.632
EEM-54	Plant	Cooling Tower Sequence Optimization	Ś	3,220.00	0.08	ŝ	42,933	5.38	ŝ	23,852
EEM-16	HVAC	AHU Humidification & Dehumidification Optimization	\$	18,442.00	0.21	\$	89,092	5.59	\$	42,294
EEM-14	HVAC	AHU & EF Filter Upgrade from 2" to 4"	\$	12,446.00	0.04	\$	311,150	5.63	\$	54,740
EEM-17	HVAC	AHU Removal of Inlet Vanes on P1, P2, P3 AHU's	\$	6,200.00					\$	60,940
EEM-18	HVAC	AHU Sensor Calibration/Verification	\$	5,400.00					\$	66,340
			\$	3,200.00					\$	69,540
EEM-19	HVAC	AHU Sensors Relocated & Reference Lines Installed Correctly								
EEM-26	HVAC	Critical/Control Function Sensors Calibrated/Verified	\$	88,000.00					\$	157,540
EEM-29	HVAC	Equipment & Zone Scheduling	\$	12,448.00					\$	169,988
*Some EEM-1	of the	ese tasks could potentially be performed in-house will have an EUI benefit – unable to model those imi	pacts current	lv.			7	-		

EUI Delta	\$/EUI		Cumulative EUI	Cu	umulative \$	l	
3.45	\$	132	3.45	\$	456	Ľ.	
1.81	\$	10,648	5.26	\$	19,676	Ę.	
0.05	\$	20,340	5.30	\$	20,632	i.	
0.08	\$	42,933	5.38	\$	23,852	i.	
0.21	\$	89,092	5.59	\$	42,294	Í.	
0.04	\$	311,150	5.63	\$	54,740	L.	
				\$	60,940	L.	
				\$	66,340	I I	
				\$	69,540	I I	
				\$	157,540	l	
				\$	169,988	Ľ	

Method 1 | ENERGY MODEL

Contract Client = ~\$ 25,000 Hours spent 157 hours

Scope

- Develop Energy Management Plan for CBS compliance / Decarbonization
- Prioritize investment to meet EUI goals
- Built energy model for any future studies / upgrades

Method 2 | SPREADSHEET (EST)

ROM hours to estimate energy savings 24 hours

Estimated hours for 40 measures 960 hours Approximately 6X more

than energy modeling

Cost underestimate

ROM hours of 24 hours to develop spreadsheet for each measure is probably underestimated.

Single-use

Because projects vary, spreadsheet must adapt, and the time spent developing them can increase.

Unreliable Accuracy is not guaranteed.

Achieving Success through Accuracy

Initial Load Calculation of ~500 ton cooling

PROBLEM

- The project does not have enough roof space for bigger chillers
- Traditional load calculation tool is not able to consider shading effect accurately
- Initial load is peak of peaks, not building peaks

BAM IMPLEMENTED SHADING ANALYSIS

- Peak of peak: 490 ton
- Building Peak: 450 ton

Computational Fluid Dynamics (CFD)

Simulates fluid flows and analyze the flow characteristics using numerical methods

随 umc

Top Three 2022 BAM Jobs

SAVINGS! SAVINGS! SAVINGS!

School Shelton SD Hospital Overlake Medical Center Multifamily 303 Battery

E So 10

Equal to **32,940** tree seedlings grown for 10 years 1-2 Months payback

OVER 85 ENERGY EFFICIENCY MEASURES

Questions? Let's Connect

David Park, Ph.D, PE, CEM, BEMP dlpark@umci.com | in davidlpark

Every. Single. Energy savings. Matters! David couples analysis with energy audits to identify energy efficiency measures (EEMs) that are cost effective for owners' business goals. Driven to make a significant impact towards carbon reduction and sustainability, David enjoys studying and analyzing how building energy reduces utility and operational costs, making it a great investment for the future.

Hailee Hammerquist, LEED Green Associate

Hailee is detail oriented, organized, and passionate about sustainable design. She loves tackling the complexity of our projects to ensure all the pieces fit efficiently together inside high-performing exteriors. Coming from West Virginia, Hailee is excited to experience all the outdoor adventures that the Seattle area has to offer. She spends her time off the clock outside hiking in the summer and hitting the slopes in the winter.

