

### Fort Worth's Storm Drain Rehabilitation Program: Exploring Artificial Intelligence For Cost-Effective Operations and Planning

February 9, 2024



# Program Drivers and Achievements

#### <u>1922</u>

- One century ago, so-called "Big Flood" led to creation of TRWD



#### <u>1949</u>

- Flood led to loss of life, thousands homeless, and property destruction – prompted creation of levees



#### <u>2004</u>

- Five fatalities due to flooded roadways and significant flooding to 300 homes and businesses
- 2006 Utility created to provide dedicated funding to address stormwater needs



April 2004: 3 fatalities E. Butler St. & McClure St. June 2004: E. Butler St. & McClure St. Flooding June 2004: Westcliff June 2004: Berry Street Urban Village

### Storm Drainage Level of Service and SDRP Drivers

### Early 2000's

Effective management of storm drain infrastructure + operations

### <u>2006</u>

- Storm Water Utility established

#### 2012 to 2016

- GIS data referencing of storm drain system

### <u>2018</u>

Master Plan - expand use of data to inform programming decisions

#### 2019 to 2020

 Storm Drain Rehabilitation program developed and implemented



**Primary Functions of Stormwater Management Program** 

- Maintain Infrastructure (pipes, channels, etc.)
- Mitigate Hazards (flooding and erosion)
- Warn about Hazards (flooding and erosion)
- Review Development (compliance with City standards)





STORMWATER CRITERIA MANUAL





of Consequence

# FY24 Adopted Budget \$58 million

#### **Corporate Support 4% Debt for** Capital **Development** Improveme. Review 6% Infrastructure Customer Service Maintenance & Outreach 34% 6% Hazard Warning... Hazard **Mitigation** Large Flood Mitigation 18% **Projects** 5%

- Reactive
- Proactive
- Decreased Cost for Proactive Programs
  - matt

*Note: Infrastructure Maintenance includes Storm Drain Rehab* 

# **Original Analysis of Storm Drain Rehabilitation Needs**

- Current Capacity
  - 1 2 miles per year rehab'd
  - \$2 million + per mile
  - 15 mi/year CCTV
- Unfunded backlog
  - 30 miles of pipe over 70 yr. old
    - FY 19 projected 30+ "cave in" repairs
  - \$4-\$6M/yr for 20-30 yr "catchup"



Storm Drain Pipe Rehabilitation (miles)



# **High-Priority Storm Drains**

## Challenge

### Identify High-Priority Storm Drains

- Need an effective method to identify highpriority storm drains!
- Proactive inspection & rehabilitation
- Better utilize and learn from field-verified data



## Challenge

### Identify High-Priority Storm Drains

- Rule-based risk
  prioritization estimated
  Likelihood of Failure of
  storm drains
- Consequence of Failure as well
- BRE criteria LOF and COF

| Likelihood of Failure | Weight (%) |
|-----------------------|------------|
| Percent Consumed      | 30%        |
| Capacity              | 10%        |
| Operating Environment | 20%        |
| Material              | 20%        |
| Soils                 | 20%        |
| TOTAL                 | 100%       |

| Consequence of Failure | Weight (%) |
|------------------------|------------|
| Size                   | 40%        |
| Buildings              | 15%        |
| Roads                  | 15%        |
| Critical Service       | 15%        |
| Sag Inlets             | 15%        |
| TOTAL                  | 100%       |

## Challenge

### Identify High-Priority Storm Drains

- Business Risk Exposure (BRE) approach
- Collected 80+ miles of CCTV Improved Level of Service (2019 to 2022)
- BRE predicted 1 out of 2 (~50%) highpriority storm drains
- Disadvantage does not apply CCTV findings
- More decision-making insight possible!



## Approach

### **Machine Learning Model**

- Basic ML model (supervised binary classification)
- Learns probability of poor condition
- Attributes associated with poor condition in storm drains given more weight
- Predicts for un-inspected assets
- Most severe problems located faster

#### Tree-based model: SHAP Plot sample



## Approach

### **Overview of Modeling Process**



## Approach

### **Exploratory Data Analysis**

- Initial investigations
- Data distributions
- Missing and assumed data
- Data trends
- Feature correlations

### **Feature Engineering**

| Machine Learning Model Attribute | Туре        |
|----------------------------------|-------------|
| Pipe physical characteristics    | Independent |
| Demographics                     | Independent |
| Spatial                          | Independent |
| Pipe condition                   | Dependent   |

## Approach

### Model Assumptions

- Source dataset = 80+ inspected miles (1940 pipes) see figure
  - Utility intrusions removed
- Class imbalance = 1 to 6
  - 1: PACP Grade = 5
  - 6: PACP Grade <= 4
- Training dataset (balanced) = 30 miles (680 pipes)
- Train/Test split = 80/20
  - Train set (balanced) = 24 miles (543 pipes)
  - Test set (balanced) = 6 miles (137 pipes)
    - 10-fold cross-validation
- Recall "True Positive Rate"



## Solution

### ML Identification of High-Priority Storm Drains

- Identifies 4 out of 5 <u>known</u> storm drains in poor condition i.e. PACP=5
- Recall median value = 80%
- Cross validation
  - Recall min = 76%
  - Recall max = 85%
- Trained model predicts for unseen pipes
- Model results will improve over time

| <b>Cross Validation</b> |        |     |  |  |  |
|-------------------------|--------|-----|--|--|--|
|                         | Recall | CV  |  |  |  |
|                         | 85%    | 11  |  |  |  |
|                         | 82%    | 20  |  |  |  |
|                         | 81%    | 101 |  |  |  |
|                         | 81%    | 105 |  |  |  |
|                         | 80%    | 95  |  |  |  |
|                         | 80%    | 43  |  |  |  |
|                         | 79%    | 5   |  |  |  |
|                         | 79%    | 71  |  |  |  |
|                         | 78%    | 120 |  |  |  |
|                         | 76%    | 89  |  |  |  |

### Cross Timbers Rd thlake Grapevine Vataug Bedford Euless Haltom City Arlington Storm Drain Smart LOF Smart LOF Low Risk (72%) Medium Risk (22%) 1187 -Crowley-Plover-Rd rleson High Risk (6%)

## **Takeaways**

- ML Smart LOF model +30% improvement over BRE approach
- TPW adopted AI-based mapshed prioritization in FY23
- Multiple severe defects identified
- Savings of 15-25% estimated for proactive, planned repairs
- Examples below = value-added

### **Examples - AI-prioritized defects/mapsheds**





# Semi-Automated CCTV Defect QC

## Challenge

### QA/QC of Storm Drain CCTV



## Challenge

### QA/QC of Storm Drain Defects

- April 2020, Linwood area pipe with <u>significant</u> defects overlooked during CCTV
- Flagged during 15-20% QC
- Risk of partial QC
- How to supplement partial CCTV review/QC?



## Approach

### Semi-automated CCTV Defect QC

- Computer vision, object detection technology for QC
- Deep learning model trained & evaluated
- 9500 training objects
- 9 broad defect classes

#### **Class Balance\***



\* 9,579 training objects identified from ~1,500 storm drain inspections

## Labeling/Training



### **Defect Detection**



FORT WORTH SDRP | Semi-Automated CCTV Defect QC

### **Model Application and Deliverables**



Table for GIS

## **Solution**

### 100% Baseline QA/QC of Storm Drain Inspections

- Comparison, Linwood pipe that was missed
- Tabular and PDF report outputs also generated
- Cost comparison under evaluation in FY23



## **Solution**

Video clip



## Where Can We Improve?

 Active flow – sometimes mistaken for utility intrusion



Joints – sometimes detected as offsets



 Laterals/taps – occasionally classified as holes



- Text overlay impacts tabular results
- Class balance is important!

## **Takeaways**

- Computer vision for 100% baseline pipe review
- Technical expert in the loop is essential!
- Manual review is still performed and is necessary
- Focuses effort on review of high-priority defects

### **Examples - AI-flagged defects that would have been missed**



# Conclusion

### SDRP Achievements 2020 to early 2024

- 145+ miles CCTV
- In-house CCTV
- 73 miles evaluated for corrective actions
- 47 sinkhole concerns evaluated
- TPW collaborative efforts
- State and nationallevel recognition (ACEC 2022)



Linwood area rehabilitation projects



## **Final Takeaways**



#### FORT WORTH SDRP | Conclusion

Q & A



Lane Zarate, PE City of Fort Worth TPW Assistant Director 817-392-8094 Lane.Zarate@fortworthtexas.gov

Matt Stahl, PE, CFM, AWAM Halff Associates Al/Infrastructure Team Leader 817-764-7516 <u>mstahl@halff.com</u>